Charalampos Pappas Awarded Prestigious ERC Starting Grant for Research Excellence

Chemist Dr. Charalampos Pappas from the Cluster of Excellence Living, Adaptive and Energy-autonomous Materials Systems (livMatS) at the University of Freiburg has received a Starting Grant from the European Research Council (ERC) for his research on self-assembling materials. Pappas will receive 1.5 million euros over five years for his project “PhosphotoSupraChem”. In his project, he will develop structured fuels from phosphates in order to fabricate self-assembling materials that can dynamically reconfigure and adapt to environmental cues. He will use approaches from systems chemistry, a new field of research that deals with networks of interacting molecules. “Phosphates and phosphate esters underpin almost all biological function. In particular, triphosphate fuels are involved as energy source in metabolic processes,” explains Pappas. “Despite their multifaceted role in sustaining life, the way in which these fuels can be used beyond biology in systems chemistry is still largely unexplored.”

Molecular assemblies far from thermodynamic equilibrium
Traditionally chemistry has been designed to yield stable molecules that can be isolated. “Living systems, on the other hand, consist of molecules that are constantly changing and are not thermodynamically stable. That means that they interact with their environment, exchanging matter or energy,” states Pappas. This allows them to respond to external stimuli and adapt to change.

“Such systems form molecules at approximately the same rate as they are being degraded under the consumption of energy sources: so-called fuels.” Systems chemistry seeks to recreate such structures, known as dissipative non-equilibrium systems in which assemblies and molecules are constantly reconfigured. The new conceptual approaches to direct non-equilibrium systems are enabling methods to reach new levels of control for switchable self-assembling systems. They pave the way towards dynamic and programmable materials that respond to their environment in predefined ways.

Structured fuels for defined tasks
Naturally occurring fuels based on phosphates, such as adenosine triphosphate (ATP) or guanosine triphosphate (GTP), drive selective processes by incorporating chemical information into the structure of the fuels. Pappas will investigate this property by incorporating structural and recognition elements into the structure of synthetic phosphate fuels. “They will be equipped with amino acids and nucleobases encoding structural assembly of fuels prior to their consumption to control selectivity in reaction networks.” Moreover, the phosphate fuels will be used to transfer large chemical groups onto self-assembling species. “This will enable the folding and synthesis of large molecules in water such as oligoamides and oligonucleotides.” Based on his findings, Pappas will also develop a controllable use of the phosphate fuels towards microfluidic materials discovery.