Penn State University: Inhalable aerogel triggers immunity to COVID-19 in mice, may block transmission
An inhalable “aerogel” loaded with DNA that encodes for the SARS-CoV-2 spike protein successfully induces an immune response against COVID-19 in the lungs of mice, according to new research conducted at Penn State. The team said its aerogel could be used to create an inhalable vaccine that blocks SARS-CoV-2 transmission by preventing the virus from establishing an infection in the lungs.
“There are many potential advantages of an inhalable formulation compared to an injectable vaccine,” said Atip Lawanprasert, graduate student in biomedical engineering and a lead author of the study, which published recently in the journal Biomacromolecules. “One is avoidance of needles. Inhalable vaccines might be able to help increase the rate of vaccination because so many people are afraid of injections. No matter how high the efficacy of a vaccine, if people don’t get it, then it’s not useful.”
Scott Medina, assistant professor of biomedical engineering, Penn State, added that inhalable vaccines may be more shelf stable than traditional vaccines.
“Importantly,” Medina said, “inhalable vaccines may induce an antibody response locally in the lungs where it can potentially neutralize and clear the virus before it fully infects the host and causes symptoms.”
By contrast, Girish Kirimanjeswara, associate professor of veterinary and biomedical sciences, explained that the injectable COVID-19 vaccines induce a systemic immune response, which is effective at fighting infections with SARS-CoV-2, but not as potent as an inhalable vaccine would be in stopping the infection at the location of the virus’s entry into the body.
“The current vaccines are not very good at preventing transmission because they allow the virus to replicate in the body, even for a short period, and then transmit to other individuals,” said Kirimanjeswara. “An inhalable vaccine would elicit local immunity at the primary site of infection, where SARS-CoV-2 could be rapidly neutralized and eliminated without the inflammatory response characteristic of systemic vaccination.”